Area:

1 square ft. = 144 square inches

1 square yd. = 9 square ft.

1 cubic yd. = 27 cubic ft.

Chemical Dosage:

All these formulas require to be divided by % of strength.

Flow—Chemical by weight:

lbs/day = MGD \times 8.34 \times PPM, or

lbs/day = gpm \times .012 \times PPM (if you want to leave it as gal/min, I would suggest parenthesis)

<u>Circular Area = .785 x Diameter² or $3.14 \times Radius^2$ (pi x R²) (pi = 3.14)</u>

Circular Volume:

Area x Height or Length

Circumference:

3.14 X Diameter (Pi x Diameter)

Concentration:

1 part per million (ppm) = 1 milligram per liter

=0.0584 grains per gallon

=8.34 Pounds per MG

1 pound of weight per million pounds

1 part per billion = 1 mg/L (microgram/Liter)

CT = Chlorine Concentration (mg/L) x Time (min)

<u>Detention time</u> = <u>Tank Volume (gallons)</u>

Flow (gpm or gpd or gph)

Dilutions =

 $V^1 \times C^1 = V^2 \times C^2$ $V^1 \times C^1 + V^2 \times C^2 = Vt \times Ct$ (t equals totals of 1 & or 2)

Efficiency:

% Efficiency = out power input power

Filtration Rate (gpm/ft2) = Flow (gal/min)
Surface Area (ft²)

Flow—Chemical by volume:

Gallons/day = MGD or gpm x PPM

Flow Rate =

Q (flow $ft^3/sec.$) = V (velocity ft/sec.) x A (area ft^2)

Flows:

1 gallons per minute = 1,440 gallons/day

1 cubic foot per second (cfs) = 646,272 gallons/day

= 448.8 gallons per minute

1 million gallons per day = 1.55 cubic ft/sec.=

694.4 gallons per minute

Force =

Pressure (psi) x Area (inches²)

Horsepower:

1 horsepower = 550 foot-pounds/second

=33,000 foot-pounds/minute

=1,980,000 foot-pounds/hour

Break Horsepower = <u>Water Horsepower</u>

Pump Efficiency

Motor Horsepower = Brake Horsepower

Motor Efficiency

Water Horsepower = Q (flow gal/min.) x H (Head in ft.)

3960

Kilowatts (kW) = $0.746 \times Motor Horsepower$

Hvdraulics:

2.31 Head Feet = 1 PSI

0.433 PSI = 1.0 Feet of Head

Lenaths:

1 foot = 12 inches

1 yd. = 3 ft. = 36 inches

1 mile = 5,280 ft.

Per Capita Water Use =

Water used (gal/day)/total number of people

Percent =

Whole

<u>Part</u> x 100

Percent Strength by Weight =

Weight of Solute x 100

Weight of Solution

Power (Electrical):

Kilowatts (kW) = $0.746 \times Motor Horsepower$

Specific Capacity = Flow (gallons per minute)

Well Drawdown (feet)

Specific Gravity =

Solution weight (lbs/gal)

Weight of Water (8.34 lbs/gal)

Square or Rectangle Area =

Length x Width

Surface Loading, GPD/sq. ft. = Flow (gal/day)

Surface Area (sq ft)

Temperature:

Degree Fahrenheit = Degree C \times 9/5 +32

Degree Centigrade = (Degree F -32) x 5/9

Time:

1 minute = 60 seconds

1 hour = 60 minutes = 3600 seconds

1 day = 24 hours = 1,440 minutes = 86,400 seconds

1 week = 7 days

1 yr. = 12 months = 52 weeks = 365 days

Volume and Capacity:

1 cubic ft. = 7.48 gallons

1 cubic yd. = 27 cubic ft.

1 quart = 2 pints = 32 fluid ounces

1 liter = 1000 milliliters = 1.06 quarts =

1000 cubic centimeters

1 gallon (gal) = 8 pints = 231 cubic inches =

3.785 liters = 3,785 milliliters

1 acre foot (ac. ft.) = 43,560 cubic feet =

325,851 gallons

Weight:

1 pound = 16 ounces = 7000 grains =

453.6 grams = .454 kilograms

1 kilogram = 1,000 gm = 2.205 pounds

1 ton = 2,000 pounds

1 gallon of water = 8.34 pounds

1 cubic ft. of water = 62.4 pounds

1 liter of water = 1 kilogram = 1000 grams

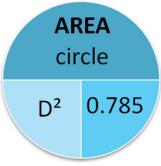
1 milliliter of water = 1 gram

Density of water = 1gm/ml or 1gm/cc

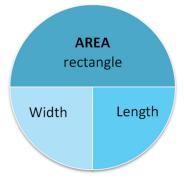
Specific gravity of water = 1.00

Weight of Solution = Weight of Solute + Weight of Solvent

Wire to Water Efficiency:


Overall Efficiency= Water Horsepower x 100

Electrical Horsepower


PIE WHEELS

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.

Area of a Circle

Area of a Rectangle

Volume of Rectangular Tank

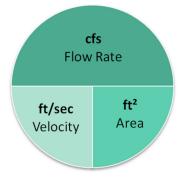
Volume

Rectangle

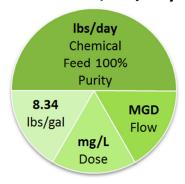
Length

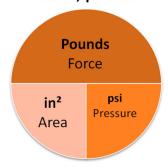
Height

Volume of Cylinder



Horsepower, Water (whp)




Width

Feed Rate, lbs/day

Force, pounds

